- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0002000002000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Wu, Hongyi (4)
-
Zhu, Liuwan (4)
-
Ning, Rui (3)
-
Xin, Chunsheng (3)
-
Arcaute, Karina (1)
-
He, Yuming (1)
-
Li, Jiang (1)
-
Ossom, Jewel (1)
-
Purwanto, Wirawan (1)
-
Sosonkina, Masha (1)
-
Wang, Chonggang (1)
-
Wang, Cong (1)
-
Zhang, Qiao (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper proposes SEER, a novel backdoor detection algorithm for vision-language models, addressing the gap in the literature on multi-modal backdoor detection. While backdoor detection in single-modal models has been well studied, the investigation of such defenses in multi-modal models remains limited. Existing backdoor defense mechanisms cannot be directly applied to multi-modal settings due to their increased complexity and search space explosion. In this paper, we propose to detect backdoors in vision-language models by jointly searching image triggers and malicious target texts in feature space shared by vision and language modalities. Our extensive experiments demonstrate that SEER can achieve over 92% detection rate on backdoor detection in vision-language models in various settings without accessing training data or knowledge of downstream tasks.more » « less
-
Zhu, Liuwan; Ning, Rui; Xin, Chunsheng; Wang, Chonggang; Wu, Hongyi (, 2021 IEEE/CVF International Conference on Computer Vision (ICCV))
-
Zhu, Liuwan; Ning, Rui; Wang, Cong; Xin, Chunsheng; Wu, Hongyi (, MM '20: Proceedings of the 28th ACM International Conference on Multimedia)null (Ed.)
-
Purwanto, Wirawan; He, Yuming; Ossom, Jewel; Zhang, Qiao; Zhu, Liuwan; Arcaute, Karina; Sosonkina, Masha; Wu, Hongyi (, The Journal of Computational Science Education)null (Ed.)
An official website of the United States government
